
ClassGuard Quick Start Guide
Version 7.0

ClassGuard Quick Start © 2023 zenofx.com 1/12

Table Of Contents

 1 Introduction..3

 1.1 Feature list...3

 2 Release notes...4

 2.1 Upgrade to version 2.5..4

 2.2 Upgrade to version 3.0..4

 2.3 Upgrade to version 3.5..4

 2.4 Upgrade to version 4.0..4

 2.5 Upgrade to version 5.0..4

 2.6 Upgrade to version 6.0..4

 2.7 Upgrade to version 7.0..4

 3 First demo application...5

 4 Encrypting applications...6

 4.1 The Command Line Interface..6

 4.2 Encryption by command line..6

 4.3 The ClassGuard crypt ant task..6

 4.4 The ClassGuard crypt maven mojo...7

 4.5 Encrypting multiple jar files..9

 4.6 Reflection based frameworks..9

 4.7 WebStart..9

 5 Using ClassGuard as a license manager..10

 5.1 Encrypting your application..10

 5.2 Creating licenses by GUI...10
 5.2.1 Creating a product key...11
 5.2.2 Creating a license...11

 5.3 Creating licenses by command line...11

 5.4 Implementing your own license GUI or license storage...11

 6 Using ClassGuard in combination with J2EE containers..12

 6.1 Using ClassGuard in combination with Tomcat...12

ClassGuard Quick Start © 2023 zenofx.com 2/12

 1 Introduction

ClassGuard is a tool to prevent Java decompiling and for license management of Java
applications. The Java class files are encrypted using 128Bit AES encryption. The AES key is
generated randomly every time you start the encryption tool.

The decryption is done transparently by a custom class loader. The main part of this class loader is
written in C to prevent decompiling and other tampering.

If license management is activated, classes are only decrypted when a valid license is available.

ClassGuard supports Oracle Java and OpenJDK 8, 11, 17 and 21 on Windows and Linux (32 and
64bit Intel platforms). Optionally, OSX (both 64bit Intel and Apple Silicon/ARM) and Linux ARM64
platforms are available. Other Java versions may work, but are not officially supported.

There are three ways of invoking ClassGuard:

 A simple command line interface (CLI)

 Ant tasks

 Maven integration

An evaluation version of ClassGuard is available for download at

https://zenofx.com/classguard/ClassGuard-latest.zip

 1.1 Feature list

This version contains the following features:

 Transparent class encryption

 License management (by CLI and GUI)

 Built-in application starter

 Support for multiple jar files

 Ant task

 Maven integration

 Resource encryption

 Tomcat support

ClassGuard Quick Start © 2023 zenofx.com 3/12

https://zenofx.com/classguard/ClassGuard-latest.zip

 2 Release notes

 2.1 Upgrade to version 2.5

 ClassGuard now has a built in application starter, including a GUI for requesting licenses.
Implementing your own startup code or setting the system class loader is now only
necessary in exceptional cases.

 The syntax for setting custom attributes in licenses has slightly changed.

 2.2 Upgrade to version 3.0

 ClassGuard now has a GUI for creating licenses.

 2.3 Upgrade to version 3.5

 TomcatClassGuard.jar has changed.

 2.4 Upgrade to version 4.0

 The package structure of ClassGuard has changed. The complete path of the ClassGuard
class is now com.zenofx.classguard.bootstrap.ClassGuard. For compatibility reason, a
wrapper class with the old package net.jsecurity.classguard.bootstrap.ClassGuard exists.

 The ant task definition file is now in com/zenofx/classguard/bootstrap/antlib.xml

 Support for Jboss 4 was dropped, as this version is no longer supported by RedHat. Jboss
version 5.1 or 6 may be supported in a later version of ClassGuard 4.

 Support for Java 5 on OSX was dropped, since Java 6 is now available for all Intel based
Macs.

 Support for the Solaris operating system is not yet available in ClassGuard 4.

 2.5 Upgrade to version 5.0

 Support for Java 6 was dropped on all platforms

 Java is supported as Oracle JDK and OpenJDK in versions 7, 8, 9, 10 and 11.

 2.6 Upgrade to version 6.0

 Java is supported as Oracle JDK and OpenJDK in versions 7, 8, 9, 10, 11 and 17.

 Tomcat is supported for versions > 8.0. If you need support for Tomcat 7, please contact us.

 2.7 Upgrade to version 7.0

 Java is supported as Oracle JDK and OpenJDK in versions 8, 11, 17 and 21.

 Maven is now officially supported with an own repository provided by zenofx.com (see 4.4).

 Support for Java 7 was dropped.

ClassGuard Quick Start © 2023 zenofx.com 4/12

 3 First demo application

For your first test, use an application which is completely contained in one jar file. You may create
your own application jar file (e.g. using ant or the jar command line utility) or you can use an
existing demo application. In this example, we use the SwingSet2 demo from the JDK demo
directory.

Encrypt your jar file using

java -jar ClassGuard.jar crypt -in SwingSet2.jar -out SwingSet2ClassGuard.jar
-resource java

You may now start your encrypted application using

java -jar SwingSet2ClassGuard.jar

The SwingSet2 demo now starts up.

ClassGuard Quick Start © 2023 zenofx.com 5/12

 4 Encrypting applications

 4.1 The Command Line Interface

The ClassGuard CLI ist started using

java -jar ClassGuard.jar <action> <options>

If started without an action, the license GUI appears. If started with the action help, a short
description of command line parameters is displayed.

 4.2 Encryption by command line

Applications are encrypted using the crypt action. The following options are available:

-in my_project.jar Jar file to encrypt

-out crypted_jarfile.jar Destination jar file

-include packages Comma-separated list of packages or class files to encrypt in jar file.
Format is com/example/package1, com/example/package2/Class1.class.
Default is all packages are included.

-exclude packages Comma-separated list of packages or class files to exclude from
encryption in same format. Default is no packages are excluded.

-platform platforms Comma-separated list of platforms for the destination file. Possible
platforms in the evaluation version are x86_win, x64_win, x64_osx,
arm64_osx, x86_linux and x64_linux.

-cryptkey keyfile Import encryption key from file

-includelibs Force inclusion of ClassGuard libs in importkey mode

-war War mode, useful for web applications

-resource Comma-separated list of extensions of resources to encrypt. Default is no
resource encryption.

-startclass Class for starting up this jar file. By default, the class defined in the
attribute Main-Class of META-INF/MANIFEST.MF is used.

So encrypting the package myproject.business including all property files in your jar file
myproject.jar (leaving all other packages unencrypted) would look like this:

java -jar ClassGuard.jar crypt -in myproject.jar -out myproject_c.jar -include
myproject/business -resource properties

 4.3 The ClassGuard crypt ant task

The ClassGuard ant task is defined using

<taskdef classpath="ClassGuard.jar"
resource="com/zenofx/classguard/bootstrap/antlib.xml" />

ClassGuard Quick Start © 2023 zenofx.com 6/12

Currently there is one task crypt with roughly the same parameters as the crypt command line
action. The following options are available:

in my_project.jar Jar file to encrypt

out crypted_jarfile.jar Destination jar file. Must not be identical to source jar file.

include packages Comma-separated list of packages or class files to encrypt in jar file.
Format is com/example/package1, com/example/package2/Class1.class.
Default is all packages are included.

exclude packages Comma-separated list of packages or class files to exclude from
encryption in same format. Default is no packages are excluded.

platform platforms Comma-separated list of platforms for the destination file. Possible
platforms in the evaluation version are x86_win, x86_osx, x86_linux and
x64_linux.

cryptkey keyfile Import encryption key from file

includelibs true/false Force inclusion of ClassGuard libs in importkey mode. Default false.

war true/false War mode, useful for web applications. Default false.

resource Comma-separated list of extensions of resources to encrypt. Default is no
resource encryption.

startclass Class for starting up this jar file. By default, the class defined in the
attribute Main-Class of META-INF/MANIFEST.MF is used.

Using the ant task, the above example would look like this:

<taskdef classpath="ClassGuard.jar"
resource="com/zenofx/classguard/bootstrap/antlib.xml" />

<crypt in="myproject.jar" out="myproject_c.jar" include="myproject/business"
resource="properties" />

 4.4 The ClassGuard crypt maven mojo

You can use ClassGuard in your maven build by extending your pom.xml file like this:

<project>

 …

 <pluginRepositories>

 <pluginRepository>

 <id>zenofx</id>

 <url>https://download.zenofx.com/repository/</url>

 </pluginRepository>

 </pluginRepositories>

 …

ClassGuard Quick Start © 2023 zenofx.com 7/12

 <plugins>

 <!-- ClassGuard encryption -->

 <plugin>

 <groupId>com.zenofx.maven</groupId>

 <artifactId>classguard</artifactId>

 <configuration>

…

 </configuration>

 <executions>

 <execution>

 <goals>

 <goal>crypt</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 </plugins>

<project>

The following configuration options are available:

include packages Comma-separated list of packages or class files to encrypt in jar file.
Format is com/example/package1, com/example/package2/Class1.class.
Default is all packages are included.

exclude packages Comma-separated list of packages or class files to exclude from
encryption in same format. Default is no packages are excluded.

platform platforms Comma-separated list of platforms for the destination file. Possible
platforms in the evaluation version are x86_win, x86_osx, x86_linux and
x64_linux.

cryptkey keyfile Import encryption key from file

includelibs true/false Force inclusion of ClassGuard libs in importkey mode. Default false.

externallibs Use external libs, save in target directory

war true/false War mode, useful for web applications. Default false.

resource Comma-separated list of extensions of resources to encrypt. Default is no
resource encryption.

startclass Class for starting up this jar file. By default, the class defined in the
attribute Main-Class of META-INF/MANIFEST.MF is used.

postfix Postfix for encrypted jar (default unencrypted jar is overwritten)

ClassGuard Quick Start © 2023 zenofx.com 8/12

 4.5 Encrypting multiple jar files

Usually ClassGuard generates a new encryption key every time it is started. In some cases, this is
inconvenient. An application consisting of multiple jar files must share the same encryption key. In
this case, first create the encryption key using

java -jar ClassGuard.jar createkey -cryptkey key.txt

Then use the created encryption key for crypting each of the jar files. Only one of the jar files
should contain the ClassGuard libraries (usually the launcher).

java -jar ClassGuard.jar crypt -in file1.jar -out file1c.jar -cryptkey key.txt
-includelibs

java -jar ClassGuard.jar crypt -in file2.jar -out file2c.jar -cryptkey key.txt

You should change the encryption key as often as possible, e.g. for each new version.

An encyption key can also be created using the createkey ant task, e.g.

<createkey cryptkey="key.txt" />

 4.6 Reflection based frameworks

When using reflection based frameworks (e.g. Spring), it may be useful to use ClassGuard as the
system class loader. In this case, the automated launch feature of ClassGuard may not be used.
Launching your application may look like this:

java -cp myproject_c.jar
-Djava.system.class.loader=com.zenofx.classguard.bootstrap.ClassGuard
myproject.Start

 4.7 WebStart

Java WebStart applications are supported by ClassGuard.

A WebStart application has to meet the following conditions:

 Your users need a Java version still supporting WebStart (currently only Oracle’s Extended
Support version of Java 8)

 All jar files have to be signed (for encrypted jar files, this has to be done after encryption)

 The jnlp file has to include the all-permissions entry

 For the automated bootstrap mechanism to work, com.zenofx.classguard.bootstrap.Start
has to be set as main class in the jnlp file

If you need example code or you want ClassGuard to run on OpenWebStart, please contact our
support team.

ClassGuard Quick Start © 2023 zenofx.com 9/12

 5 Using ClassGuard as a license manager

The license management features of ClassGuard are only available in the full version. The
evaluation version contains license management, but all generated licenses expire when your
evaluation copy of ClassGuard expires.

 5.1 Encrypting your application

For using the license manager, you have to create a product key firstly:

java -jar ClassGuard.jar createkey -productkey myproduct.key

A product key is unique for one of your products. The resulting key file should be kept secret, as
everyone owning this key file may generate licenses for this product.

When encrypting your licensed application, you have to supply your product key and your product
name:

java -jar ClassGuard.jar crypt -productkey myproduct.key -productname
myproduct -in ... -out ...

The resulting application will only run if a matching license is available.

If no license is available, the application starter will ask for a license. This license will be stored in
the java registry. On windows, the storage path is in the windows registry in HKCU\Software\
JavaSoft\Prefs\net\jsecurity\classguard\bootstrap\<productname>. On Unix and Linux, the file for
storage of the license is ~/.java/.userPrefs/net/jsecurity/classguard/ bootstrap/prefs.xml.

 5.2 Creating licenses by GUI

After starting ClassGuard without command line parameters, the license GUI appears.

ClassGuard Quick Start © 2023 zenofx.com 10/12

 5.2.1 Creating a product key

A product key may be generated and saved to disk using File/New product key. An existing product
key can be loaded using File/Open product key.

 5.2.2 Creating a license

For creating a license, you have to load or create a product key and fill in the system id delivered
by your customer. For evaluation licenses, a system id is not necessary. A new license may be
created using the Create license button.

 5.3 Creating licenses by command line

Licenses for your product may be created using

java -jar ClassGuard.jar license -productkey myproduct.key -licensefile
license.txt licenseoptions

The following options are available:

-type H | U | E License type host-based/user-based/eval (required)

-productkey keyfile Create license for this product (required)

-licensefile file License file for output (required)

-comment comment License comment

-expire days License expiration in days

-systemid id System id delivered by customer (required for type H and U)

-attribute attrib Custom attribute (key=value), may be used multiple times

 5.4 Implementing your own license GUI or license storage

If you want to store the license in your own file or you want your own GUI for requesting the
license, you have to implement the interface com.zenofx.classguard.bootstrap.LicenseInterface.
You have to define your own implementation by setting the attribute ClassGuard-License-Interface
in META-INF/MANIFEST.MF.

ClassGuard Quick Start © 2023 zenofx.com 11/12

 6 Using ClassGuard in combination with J2EE containers

 6.1 Using ClassGuard in combination with Tomcat

As of Version 1.5, ClassGuard supports Tomcat containers. Dynamic starting, stopping and
reloading of web applications is also supported.

To use ClassGuard in combination with tomcat, perform these simple steps:

1. Configure your web application for using the ClassGuard tomcat class loader. The easiest way
to do so is to put a file "context.xml" into the META-INF directory of your web application,
containing the following snippet:

<?xml version="1.0" encoding="UTF-8"?>

<Context>

<Loader loaderClass="com.zenofx.classguard.support.TomcatClassGuard"/>

</Context>

Other ways of configuring the context of your web application will also work (see
https://tomcat.apache.org/tomcat-9.0-doc/config/context.html).

2. Encrypt your war file using the -war option, e.g.

java -jar ClassGuard.jar crypt -in myapp.war -out my_encrypted_app.war -war

All classes contained in WEB-INF/classes will be encrypted.

OR

Encrypt the jar file containing your application logic and put it into the WEB-INF/lib directory of your
war file.

java -jar ClassGuard.jar crypt -in myapp.jar -out my_encrypted_app.jar

Don't use the -war option in this case. It is not possible to combine both methods for one web
application.

3. Put the ClassGuard tomcat class loader TomcatClassGuard.jar in the lib directory of your tomcat
installation. TomcatClassGuard.jar does not contain any keys and may be shared between
applications and even between different application vendors.

4. Start tomcat and deploy your application as usual.

If you want to protect jsp files, pre-compile them as classes. You can use JSPC to do this (see
https://tomcat.apache.org/tomcat-9.0-doc/jasper-howto.html).

The Tomcat class loading mechanism works differently for listeners. They are not loaded by the
class loader configured in the application context. Therefore, it is not possible to encrypt listener
classes or any classes which are called directly be listeners. You can exclude these classes from
encryption using the -exclude parameter.

The <jsp:useBean> tag uses dynamic class inspection, which doesn’t work with encrypted
classes. You can exclude these classes from encryption using the -exclude parameter.

ClassGuard Quick Start © 2023 zenofx.com 12/12

https://tomcat.apache.org/tomcat-9.0-doc/jasper-howto.html
https://tomcat.apache.org/tomcat-9.0-doc/config/context.html

	1 Introduction
	1.1 Feature list

	2 Release notes
	2.1 Upgrade to version 2.5
	2.2 Upgrade to version 3.0
	2.3 Upgrade to version 3.5
	2.4 Upgrade to version 4.0
	2.5 Upgrade to version 5.0
	2.6 Upgrade to version 6.0
	2.7 Upgrade to version 7.0

	3 First demo application
	4 Encrypting applications
	4.1 The Command Line Interface
	4.2 Encryption by command line
	4.3 The ClassGuard crypt ant task
	4.4 The ClassGuard crypt maven mojo
	4.5 Encrypting multiple jar files
	4.6 Reflection based frameworks
	4.7 WebStart

	5 Using ClassGuard as a license manager
	5.1 Encrypting your application
	5.2 Creating licenses by GUI
	5.2.1 Creating a product key
	5.2.2 Creating a license

	5.3 Creating licenses by command line
	5.4 Implementing your own license GUI or license storage

	6 Using ClassGuard in combination with J2EE containers
	6.1 Using ClassGuard in combination with Tomcat

